SECTION A

Attempt ALL questions.

1. If \(z = 1 + i \), determine the real and imaginary parts of \(iz \), \(z^{100} \), and \(e^z \). [5]

2. Expand \(f(x) = \cos x \) as a power series about \(x = \pi/4 \), up to and including the first three non-zero terms. [5]

3. Find the particular solution of the initial value problem

 \[
 \frac{dy}{dx} = \frac{2(x + 2y)}{x - y} \quad \text{where} \quad y(1) = 0 .
 \]

 [5]

4. Calculate the directional derivative of \(f(x, y, z) = x^2 + y^2 + z^2 \) in the direction of \(i - j \), at the point \((x, y, z) = (0, 2, 0) \). [5]

5. If

 \[
 \sin(x^2 + y^2) = y^2 + z^2 ,
 \]

 determine

 \[
 \left(\frac{\partial x}{\partial y} \right)_z \quad \text{and} \quad \left(\frac{\partial y}{\partial x} \right)_z .
 \]

 [5]

6. Calculate

 \[
 \iint_{R} x^2 \, dx \, dy
 \]

 where \(R \) is the unit disk \(x^2 + y^2 \leq 1 \). [5]

7. The Bessel functions \(J_0 \) and \(J_1 \) satisfy the following relations

 \[
 \frac{d}{ds} \left(sJ_1(s) \right) = sJ_0(s) \quad \text{and} \quad \frac{d}{ds} J_0(s) = -J_1(s) .
 \]

 For \(n = 2, 3, 4, \ldots \), derive the reduction formula

 \[
 \int_{0}^{x} s^n J_0(s) \, ds = x^n J_1(x) + (n - 1)x^{n-1}J_0(x) - (n - 1)^2 \int_{0}^{x} s^{n-2} J_0(s) \, ds .
 \] [5]

8. If the vectors \(a, b \) and \(c \) satisfy

 \[
 a + b + c = 0 ,
 \]

 show that

 \[
 a \times b = b \times c = c \times a .
 \] [5]
SECTION B

Attempt THREE questions.

9. (a) Define the terms even and odd functions. Explain how symmetry can simplify the process of integration. [5]

(b) The density of a sheet of material at coordinates \((x, y)\) is

\[\rho(x, y) = x^2. \]

(i) From the sheet of material, a rectangular lamina \(R_1\) with diagonal corners at \((x, y) = (-1, 0)\) and \((1, 1)\) is cut out, as shown below. Find the mass and the centre of mass of this lamina. [4]

(ii) A second lamina, \(R_2\), in the shape of half a disk of radius 2, is cut out from the same sheet, as shown below. Find the centre of mass of this lamina. [4]

(c) A rectangular lamina, of the same shape as \(R_1\) above, is cut from a different piece of material with density

\[\rho(x, y) = y \exp(-x^4). \]

Find its centre of mass. [4]

(d) From a third piece of material, two laminas are cut in the shapes of \(R_1\) and \(R_2\) as above. The masses of the laminas are \(M_1\) and \(M_2\), respectively, and the \(y\)-coordinates of their centres of mass are \(y_1\) and \(y_2\).

Show that the combined lamina, \(R_1 + R_2\), has a centre of mass with \(y\)-coordinate

\[\frac{M_1 y_1 + M_2 y_2}{M_1 + M_2}. \] [3]

Turn over.
10. (a) What is meant by a linear differential equation?

(b) The functions $T(\theta)$ and $R(r)$ are solutions of the differential equations

$$\frac{d^2T}{d\theta^2} + m^2 T = 0 \quad (1)$$

$$r^2 \frac{d^2R}{dr^2} + r \frac{dR}{dr} - m^2 R = 0 \quad (2)$$

where m is a constant.

Confirm that $f(r, \theta) = R(r)T(\theta)$ satisfies Laplace’s equation in polar coordinates,

$$\frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \left(\frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} = 0,$$

for any value of m, assuming $r > 0$.

(c) Find the general solution of equation (1) for $T(\theta)$. What does imposing the boundary condition $T(\theta + 2\pi) = T(\theta)$ require?

(d) By assuming a trial solution of the form r^n, determine the general solution of equation (2) when $m \neq 0$, explaining your reasoning.

(e) Explain why the method of part (d) fails when $m = 0$.

Solve equation (2) in the case of $m = 0$, by transforming it into a first-order differential equation, or otherwise.
11. A solid material in a magnetic field B at temperature T has an internal energy $U(B, T)$, and an entropy $S(B, T)$.

(a) Explain why U can alternatively be regarded as a function of B and S. \[1\]

(b) In the light of part (a), and by considering the total differentials dU and dS, show that
\[
\left(\frac{\partial U}{\partial B} \right)_T = \left(\frac{\partial U}{\partial B} \right)_S + \left(\frac{\partial U}{\partial S} \right)_B \left(\frac{\partial S}{\partial B} \right)_T. \tag{6}
\]

(c) Thermodynamic arguments imply that
\[
dU = TdS - MdB,
\]
where M is the magnetization of the material. By considering the Helmholtz free energy, defined by $A = U - TS$, obtain the Maxwell relation
\[
\left(\frac{\partial M}{\partial T} \right)_B = \left(\frac{\partial S}{\partial B} \right)_T.
\]
Hence show that
\[
\left(\frac{\partial U}{\partial B} \right)_T = T \left(\frac{\partial M}{\partial T} \right)_B - M,
\]
and determine $\left(\frac{\partial U}{\partial B} \right)_T$ for a material that obeys Curie’s Law,
\[
M = \frac{CB}{T}, \tag{8}
\]
where C is a constant.

(d) An ideal paramagnet has a magnetization of the form
\[
M = N\mu \tanh \left(\frac{\mu B}{kT} \right),
\]
where N, μ and k are constants.
Using a Taylor expansion, show that the paramagnet obeys Curie’s Law when $\mu B \ll kT$. Determine M as $\mu B/(kT) \to \infty$. \[5\]
12. (a) The probability density function for the exponential distribution takes the form

\[f(x) = \begin{cases} \lambda e^{-\lambda x} & x \geq 0 \\ 0 & x < 0 \end{cases} \]

where \(\lambda \) and \(N \) are positive constants.

(i) Determine \(N \) such that \(f(x) \) is normalized. \[2 \]

(ii) Find the mean and standard deviation of the distribution. \[6 \]

(b) Consider a function of \(x \) and \(y \) defined by

\[g(x, y) = ax^2 + 2bxy + cy^2. \]

The quantities \(a, b \) and \(c \) are constants that can be assumed to be real and non-zero.

(i) What is meant by a stationary point of the function \(g(x, y) \)? Obtain a pair of simultaneous equations to solve for the positions of these stationary points. \[2 \]

(ii) Taking your equations from part (i), find condition(s) on \(a, b \) and \(c \) such that the equations have non-trivial solutions for \(x \) and \(y \). \[2 \]

(iii) Assume that \(a, b \) and \(c \) do not satisfy the condition(s) identified in part (ii). Locate and classify any stationary points of \(g(x, y) \), expressing your answer in terms of \(a, b \) and \(c \). \[4 \]

(iv) Assume now that \(a, b \) and \(c \) do satisfy the condition(s) identified in part (ii). Locate the stationary points of \(g \), and classify them by ‘completing the square’ in \(g \), or otherwise. \[4 \]
13. Let $a > 0$ be a real number. The nonzero complex number u satisfies $|u - a| = a$. All the possible values of u are indicated by the circle of radius a shown on the accompanying Argand diagram.

(a) The nonzero complex number v satisfies

$$|v + a| = a.$$ \hspace{1cm} (1)

Sketch a copy of the Argand diagram above and include the curve that illustrates all the possible values of v in the complex plane. \hspace{1cm} [3]

(b) Suppose that $v = \lambda u$ where $\lambda \neq 0$ is a real number. By eliminating v from equation (1) in part (a), show that

$$\lambda = \frac{2a \text{Im}(u)}{|u|^2}.$$ \hspace{1cm} [5]

(c) On your diagram of part (a), indicate a typical value of u and the corresponding point v. \hspace{1cm} [3]

(d) In terms of a, calculate

$$|u|^2 + |v|^2 \text{ and } |u - v|^2.$$ \hspace{1cm} [6]

(e) By referring to your diagram of part (a), explain the geometric significance of the result in part (d). \hspace{1cm} [3]

----------- End of Examination Paper -----------
Table of derivatives

<table>
<thead>
<tr>
<th>Function</th>
<th>Derivative</th>
<th>Function</th>
<th>Derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>(\frac{dy}{dx})</td>
<td>(y)</td>
<td>(\frac{dy}{dx})</td>
</tr>
<tr>
<td>(ax^n)</td>
<td>(anx^{n-1})</td>
<td>(\exp x)</td>
<td>(\exp x)</td>
</tr>
<tr>
<td>(\sin x)</td>
<td>(\cos x)</td>
<td>(\sin x)</td>
<td>(\cosh x)</td>
</tr>
<tr>
<td>(\cos x)</td>
<td>(-\sin x)</td>
<td>(\cosh x)</td>
<td>(\sinh x)</td>
</tr>
<tr>
<td>(\tan x)</td>
<td>(\sec^2 x)</td>
<td>(\tanh x)</td>
<td>(\sech^2 x)</td>
</tr>
<tr>
<td>(\sec x)</td>
<td>(\sec x \tan x)</td>
<td>(\sech x)</td>
<td>(-\sech x \tanh x)</td>
</tr>
<tr>
<td>(\cosec x)</td>
<td>(-\cosec x \cot x)</td>
<td>(\coth x)</td>
<td>(-\coth x \coth x)</td>
</tr>
<tr>
<td>(\cot x)</td>
<td>(-\cosec^2 x)</td>
<td>(\coth x)</td>
<td>(-\coth x \coth x)</td>
</tr>
<tr>
<td>(\sin^{-1} \left(\frac{x}{a} \right))</td>
<td>(\pm \frac{1}{\sqrt{a^2 - x^2}})</td>
<td>(\sinh^{-1} \left(\frac{x}{a} \right))</td>
<td>(\frac{1}{\sqrt{x^2 + a^2}})</td>
</tr>
<tr>
<td>(\cos^{-1} \left(\frac{x}{a} \right))</td>
<td>(\frac{1}{\sqrt{a^2 - x^2}})</td>
<td>(\cosh^{-1} \left(\frac{x}{a} \right))</td>
<td>(\frac{1}{\sqrt{x^2 + a^2}})</td>
</tr>
<tr>
<td>(\tan^{-1} \left(\frac{x}{a} \right))</td>
<td>(\frac{a}{x^2 + a^2})</td>
<td>(\tanh^{-1} \left(\frac{x}{a} \right))</td>
<td>(\frac{a}{(a^2 - x^2)})</td>
</tr>
<tr>
<td>(\log x)</td>
<td>(\frac{1}{x})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: \(a \) is a constant

Table of standard integrals

<table>
<thead>
<tr>
<th>Function</th>
<th>Integral</th>
<th>Function</th>
<th>Integral</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ax^n)</td>
<td>(\frac{ax^{n+1}}{n+1}; n \neq -1)</td>
<td>(\exp (ax))</td>
<td>(\frac{1}{a} \exp (ax))</td>
</tr>
<tr>
<td>(\frac{1}{x})</td>
<td>(\log</td>
<td>x</td>
<td>)</td>
</tr>
<tr>
<td>(\sin x)</td>
<td>(-\cos x)</td>
<td>(\cosh x)</td>
<td>(\sinh x)</td>
</tr>
<tr>
<td>(\cos x)</td>
<td>(\sin x)</td>
<td>(\tanh x)</td>
<td>(\log</td>
</tr>
<tr>
<td>(\sec x)</td>
<td>(\log</td>
<td>\sec x + \tan x</td>
<td>)</td>
</tr>
<tr>
<td>(\cosec x)</td>
<td>(-\log</td>
<td>\cosec x + \cot x</td>
<td>)</td>
</tr>
<tr>
<td>(\cot x)</td>
<td>(\log</td>
<td>\sin x</td>
<td>)</td>
</tr>
<tr>
<td>(\sec^2 x)</td>
<td>(\tan x)</td>
<td>(\cosech^2 x)</td>
<td>(-\coth x)</td>
</tr>
<tr>
<td>(\cosec^2 x)</td>
<td>(-\cot x)</td>
<td>(\sech x \tanh x)</td>
<td>(-\sech x)</td>
</tr>
<tr>
<td>(\sec x \tan x)</td>
<td>(\sec x)</td>
<td>(\cosech x \coth x)</td>
<td>(-\cosech x)</td>
</tr>
<tr>
<td>(\cosec x \cot x)</td>
<td>(-\cosec x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{\sqrt{a^2 - x^2}})</td>
<td>(\sin^{-1} \left(\frac{x}{a} \right))</td>
<td>(\frac{1}{\sqrt{x^2 + a^2}})</td>
<td>(-\tan^{-1} \left(\frac{x}{a} \right))</td>
</tr>
<tr>
<td>(\frac{1}{x^2 + a^2})</td>
<td>(\frac{1}{a})</td>
<td>(\frac{1}{\sqrt{x^2 + a^2}})</td>
<td>(\sinh^{-1} \left(\frac{x}{a} \right))</td>
</tr>
<tr>
<td>(\frac{1}{\sqrt{x^2 - a^2}})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{cases}
 \cosh^{-1} \left(\frac{x}{a} \right) & x > |a| \\
 -\cosh^{-1} \left(\frac{-x}{a} \right) & x < -|a|
\end{cases}
\]

Note: \(a \) is a constant and the constant of integration has been omitted.
Trigonometry

Compound angles

\[
\begin{align*}
sin(A \pm B) &= \sin A \cos B \pm \cos A \sin B \\
cos(A \pm B) &= \cos A \cos B \mp \sin A \sin B \\
tan(A \pm B) &= \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}
\end{align*}
\]

Half Angle

\[
\begin{align*}
\sin A &= \frac{2t}{1 + t^2} \\
\cos A &= \frac{1 - t^2}{1 + t^2} \\
\tan A &= \frac{2t}{1 - t^2}
\end{align*}
\]

In which \(t = \tan \frac{A}{2} \)

Sum and difference formulae

\[
\begin{align*}
\sin A + \sin B &= 2 \sin \left(\frac{A + B}{2}\right) \cos \left(\frac{A - B}{2}\right) \\
\sin A - \sin B &= 2 \cos \left(\frac{A + B}{2}\right) \sin \left(\frac{A - B}{2}\right) \\
\cos A + \cos B &= 2 \cos \left(\frac{A + B}{2}\right) \cos \left(\frac{A - B}{2}\right) \\
\cos A - \cos B &= -2 \sin \left(\frac{A + B}{2}\right) \sin \left(\frac{A - B}{2}\right)
\end{align*}
\]